4 research outputs found

    Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics

    Get PDF
    Abstract Manual labor is still strongly present in many industrial contexts (such as aerospace industry). Such operations commonly involve onerous tasks requiring to work in non-ergonomic conditions and to manipulate heavy parts. As a result, work-related musculoskeletal disorders are a major problem to tackle in workplace. In particular, back is one of the most affected regions. To solve such issue, many efforts have been made in the design and control of exoskeleton devices, relieving the human from the task load. Besides upper limbs and lower limbs exoskeletons, back-support exoskeletons have been also investigated, proposing both passive and active solutions. While passive solutions cannot empower the human's capabilities, common active devices are rigid, without the possibility to track the human's spine kinematics while executing the task. The here proposed paper describes a methodology to design an active back-support exoskeleton with backbone-based kinematics. On the basis of the (easily implementable) scissor hinge mechanism, a one-degree of freedom device has been designed. In particular, the resulting device allows tracking the motion of a reference vertebra, i.e., the vertebrae in the correspondence of the connection between the scissor hinge mechanism and the back of the operator. Therefore, the proposed device is capable to adapt to the human posture, guaranteeing the support while relieving the person from the task load. In addition, the proposed mechanism can be easily optimized and realized for different subjects, involving a subject-based design procedure, making possible to adapt its kinematics to track the spine motion of the specific user. A prototype of the proposed device has been 3D-printed to show the achieved kinematics. Preliminary tests for discomfort evaluation show the potential of the proposed methodology, foreseeing extensive subjects-based optimization, realization and testing of the device

    A Planar Parallel Device for Neurorehabilitation

    No full text
    The patient population needing physical rehabilitation in the upper extremity is constantly increasing. Robotic devices have the potential to address this problem, however most of the rehabilitation robots are technically advanced and mainly designed for clinical use. This paper presents the development of an affordable device for upper-limb neurorehabilitation designed for home use. The device is based on a 2-DOF five-bar parallel kinematic mechanism. The prototype has been designed so that it can be bound on one side of a table with a clamp. A kinematic optimization was performed on the length of the links of the manipulator in order to provide the optimum kinematic behaviour within the desired workspace. The mechanical structure was developed, and a 3D-printed prototype was assembled. The prototype embeds two single-point load cells to measure the force exchanged with the patient. Rehabilitation-specific control algorithms are described and tested. Finally, an experimental procedure is performed in order to validate the accuracy of the position measurements. The assessment confirms an acceptable level of performance with respect to the requirements of the application under analysis

    Additive manufacturing: Fused deposition modeling advances

    No full text
    The paradigm of the manufacturing systems was broken in 1980 with the beginning of the Additive Manufacturing (AM). This technology has been considered as the complement of the classic manufacturing technology, where the material is removed from a raw material until getting the final product. The addition of material in layers have been considered the new alternative to face the impact in the environment, the economy of materials and process, and the opportunity to generate new complex shapes limited by the classic manufacturing technology. The present chapter exposes the advances of the Fused Deposition Modeling (FDM), one of the seven technologies of AM which is mostly used during the past three decades. In this field, different adaptations and investigations of the technology have been focused on the increment of the capacity of the production system and improve the quality generated by this technique. The methodology used to determine the advance of AM was to employ a Systematic Literature Review using databases. The search was developed considering the keywords of AM for the construction of specific search syntax of documents associated with this technology. The documents obtained were analyzed to identify the progress in this technology. The results present the advancements of the FDM as a technology that change the industrial processing to customize the process, where the globalization makes possible to have this technology available at each desk
    corecore